
 

 

 

 

 

 
© 2011 360Data 
http://www.360data.nl  

 

1 

Looping through a collection of SQL tables using the SSIS Foreach 
Loop Container 
 

 
 
Introduction 
 
A lady named Barbara read my SSIS Foreach Loop Container doc and asked how to use the same 

container to perform ETL operations on each table in a database instead of a list of files. The answer, 

or this version of it, seemed like a worthwhile topic to address to a wider audience.  

This isn’t the only way to tackle this problem, of course. In fact, it’s hardly worthwhile using SSIS for 

this within a single database – I’d be inclined to do this in TSQL - but the technique could be valuable 

if you wanted to loop through objects in multiple databases.  

Anyway, the trick in this instance is to use the Foreach ADO.NET Schema Rowset Enumerator in the 

Foreach Loop Container. Let’s set up a simple test to copy data from a list of tables to another table; 

first we’ll need a sandbox to play in. I’m assuming that you’re familiar with SSIS basics, but take a 

look at some of my other examples if this isn’t clear. 

 

Test database setup 
 
Run the following script in the Management Studio to create a new database and some tables within 
it. 
 
use master 

go 

 

-- Create new database (default opts.) and new tables 

 

create database testdb 

go 

 

use testdb 

go 

 

 

CREATE SCHEMA [Test] AUTHORIZATION [dbo] 

GO 

 

create table [Test].tbTest1  

 (ID int not null primary key identity(1, 1), 

 ValueField int not null); 

  

 

create table [Test].tbTest2  

 (ID int not null primary key identity(1, 1), 

 ValueField int not null);  



 

create table tbTestDestination 

 (ID int not null primary key identity(1, 1), 

 TableName  nvarchar(128)  null, 

 TableValue  nvarchar(128) null); 

 

 

-- Populate tables with test data 

  

insert into [Test].tbTest1 (ValueField) 

 select [OBJECT_ID] 

 from master.sys.objects;  

   

insert into [Test].tbTest2 (ValueField) 

 select (ValueField + 123) 

 from [Test].tbTest1 

 where ID < 50;  

 

 
Next, create a new Integration Services package named “Schema Rowset” in a new or existing 
project/solution. Add three variables as follows:  

 
 

 
 

 

 

  



 

 

 

 

 

 
© 2011 360Data 
http://www.360data.nl  

 

3 

Drag a Foreach Loop Container on to the Control Flow surface. Right-click on the container and 
choose Edit… from the context menu. In the Foreach Loop Editor, select Collection on the left-hand 
side. 

 
 

 
 

 
Select “Foreach ADO.NET Schema Rowset Enumerator” from the Enumerator list, then select New 
connection… from the Connection drop-down. Point the connection manager towards your server 
and the newly-created testdb database.  
 
Select Tables from the Schema drop-down. You’ll notice that there’s a long list of objects and 
metadata that we can select from, but for now (because that was the question) we’ll stick to tables.  

 
  



Click the Set Restrictions button to limit the amount of data the enumerator returns. For this 
example, I only want to loop through tables in the “Test” schema so I configure ”Test” as the 
restriction for TABLE_SCHEMA. 

 
 

 
 

 
  



 

 

 

 

 

 
© 2011 360Data 
http://www.360data.nl  

 

5 

Select Variable Mappings in the Foreach Loop editor and add mappings for vRSSchema (with Index 1) 

and vRSTableName (Index 2). (Index 0 will enumerate the database name, should you ever need it). 
 
 

 
 
These are object variables, because only these types of variables are supported for output by this 
enumerator.  The OLEDB Data Flow component requires a string-type variable though, just to make 
life difficult, so the next step before the tablename provided by the enumerator can be used as a 
data source is to convert it. To do this, add a script task within the container.  
 
  



This example uses VB, but C# is also possible since SQL Server 2008 was released. Map the three 
variables as shown, then click Edit Script… 

 

 
 
Update the Main() subroutine as follows: 

 
 Public Sub Main() 

 

        Dim vTableNameStr As String 

 

        vTableNameStr = "[" + Dts.Variables("vRSSchema").Value.ToString + "]." 

 vTableNameStr = vTableNameStr + Dts.Variables("vRSTableName").Value.ToString 

 

 

        Dts.Variables("vTableName").Value = vTableNameStr 

 

        Dts.TaskResult = ScriptResults.Success 

 

 End Sub 

 

…then save and close the script editor. This script will convert the two records and output them as a 
string in the format [schema].TableName 
 
Add a Data Flow task within the Foreach Loop container. Add an OLE DB data source to it. 



 

 

 

 

 

 
© 2011 360Data 
http://www.360data.nl  

 

7 

Create a new OLEDB connection manager for testdb  by clicking New…  from the editor, then set the 
Data access mode to “Table name or view name variable” and select User::vTableName from the 
drop-down. 

 

 
 



 
 

 
We then add a Derived Column transformation to the data flow. This is a simple copy of the 
vTableName variable as an extra column. 
 
 

 
 

 
We map this and the ValueField to an OLE DB Destination 



 

 

 

 

 

 
© 2011 360Data 
http://www.360data.nl  

 

9 

 
 

 
…and the package should now be ready to test. 

 



 
 

 
Run the package and query the tbTestDestination table; you should have 124 records looking 
something like this: 

 

 
 

 
Not a very realistic test, for sure, but the principle should be clear. Not just for looping through 
tables, but a large number of object types within your database. 

 

 

 
Paul Clancy 
360Data 
 
 
See: http://www.360data.nl/Docs/Default.aspx for other SSIS examples 

http://www.360data.nl/Docs/Default.aspx

